Magnetic Resonance Im Sequential anisotropic Wiener filtering applied to 3D MRI data
نویسندگان
چکیده
We present three different sequential Wiener filters, namely, isotropic, orientation and anisotropic. The first one is similar to the classical Wiener filter in the sense that it uses an isotropic neighborhood to estimate its parameters. Here we present a sequential version of it. The orientation Wiener filter uses oriented neighborhoods to estimate the structure orientation present at each voxel, giving rise to a modified estimator of the parameters. Finally, the anisotropic Wiener filter combines both approaches adaptively so that the appropriate approach is locally selected. Several synthetic experiments are presented showing the performance of the filters with respect to their parameters. A mean square error analysis is performed using a publicly available magnetic resonance imaging (MRI) brain phantom and a comparison with other filtering approaches is carried out. In addition, results from filtering real MRI data are presented. D 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Sequential anisotropic Wiener filtering applied to 3D MRI data.
We present three different sequential Wiener filters, namely, isotropic, orientation and anisotropic. The first one is similar to the classical Wiener filter in the sense that it uses an isotropic neighborhood to estimate its parameters. Here we present a sequential version of it. The orientation Wiener filter uses oriented neighborhoods to estimate the structure orientation present at each vox...
متن کاملMRI denoising using nonlocal neutrosophic set approach of Wiener filtering
In this paper, a new filtering method is presented to remove the Rician noise from magnetic resonance images (MRI) acquired using single coil MRI acquisition system. This filter is based on nonlocal neutrosophic set (NLNS) approach of Wiener filtering. A neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interactions with...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملDenoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging.
The Rician distribution of noise in magnitude magnetic resonance (MR) images is particularly problematic in low signal-to-noise ratio (SNR) regions. The Rician noise distribution causes a nonzero minimum signal in the image, which is often referred to as the rectified noise floor. True low signal is likely to be concealed in the noise, and quantification is severely hampered in low-SNR regions....
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007